
https://doi.org/10.1177/2378023119845758

Socius: Sociological Research for  
a Dynamic World
Volume 5: 1 –7
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2378023119845758
srd.sagepub.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction 

and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages 
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

Original Article

Network researchers, like other social scientists, are often 
interested in the covariation between measured variables, 
though in their case, these variables make reference to a 
social structure that can be interpreted as a graph. In most 
cases, they are particularly interested in variables that are 
themselves relational, such as the existence or quality of 
some tie. However, they may also be interested in the covari-
ation of individual-level variables but attentive to the loca-
tion of persons in a social network.

One way in which this is generally done is to take net-
work-based attributes of nodes and treat them as individual-
level variables. For example, we might take graph-theoretic 
quantities such as eigenvector centrality, or contextual vari-
ates such as the proportion of those to whom a node is tied 
that are in some measured state, and enter these in individ-
ual-level regressions. However, another possible approach 
would be to explore heterogeneity in a pattern of covariation 
at different parts of the network.

For example, consider a network within a large high 
school. We might, in examining this high school, be inter-
ested in whether school involvement (e.g., the number of 
clubs a student belongs to) predicts academic achievement or 
whether popularity is positively associated with grade point 
average (GPA). We might of course compare the coefficients 
from one high school with those from another. But we might 
also be interested in making internal comparisons with differ-
ent sets of students within the school. In some cases, we have 
a priori theoretical knowledge of or interest in some categori-
cal variables that might predict the strength of this relation 
(say, that between academic achievement and extracurricular 
activity). For example, we might wonder whether this effect 
was stronger among boys or among girls. In such cases, we 
might incorporate the categorical predictor as an interaction 
in an equation predicting achievement on extracurricular 

activities. However, in other cases, we may suspect that such 
categories, rather than being unmoved movers, have effects 
that themselves vary across the social structure of the school. 
We might, then, suspect that it is location in the friendship 
(say) network of students that predicts the nature of the rela-
tion between two variables: perhaps in some circles, extracur-
ricular activities are positively associated with achievement 
and, in other circles, negatively. Similarly, perhaps in some 
circles, girls tend to be higher achievers than boys, whereas in 
other circles, the reverse is true.

If we were to divide the school up into exclusive and 
exhaustive subsets of friends, we might treat membership in 
some group such as race or sex or some other categorical 
variable. However, in most cases, this requires making “cuts” 
in a larger graph whereby we decide to treat some relations 
as if they did not exist, simply because if they did not, we 
could treat these subsets as separable. But this may be to 
throw away information that is crucial to reproducing how 
each student perceives his or her local environment. We 
might be better off leaving the network as observed and 
attempting to describe the full range of association between 
our variables at all positions of the network. We then can see 
whether, from the perspective of each individual, it would 
appear that the variables are related and, if so, to what degree. 
It is for this reason that we here propose a technique of 
carrying out what we call local network regressions, in effect 
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a set of moving window regressions over the network, to 
estimate the variance in such associations. The logic is sim-
ple and straightforward, the capacity to shed light on data 
high, and the limitations and drawbacks clear. We go into 
each of these in turn.

Approach

Our approach involves computing a local regression for each 
individual in the network, producing a coefficient that might 
correspond to her best guess as to the association of the vari-
ables in question, a guess based on her observations of those 
within her personal horizon. We will call all of those within  
her horizon her “neighborhood.” We then wish to examine the 
distribution of all these local regression coefficients, to be able 
to characterize an overall network as having high or low varia-
tion across position. To formalize, let G be a network with a set 
of nodes N, each of which is observed on two variables, x and 
y. (We discuss the reason for this limitation to bivariate analy-
ses below.) We are interested in the relation of these variables, 
as quantified by a regression slope. We favor a regression as 
opposed to a correlation because it aids in comparability of 
magnitude across local regressions, given that the variances of 
the coefficients will change from one local neighborhood to 
another. For the ith individual, let Q(i) denote all the neighbors 
of i. We discuss below some of the ways that the investigator 
may construct this neighborhood. For all the members of Q(i), 
which we will index by j, we may also construct a weight wij 
indicating the strength of the relation between i (the focal 
node) and j (some neighbor).1 We discuss below some of the 
ways that the investigator may construct these weights. Thus 
for the ith individual, we fit the model

 y x w cj i j ij i= +β ,   (1)

 j Q i∈ ( ).   (2)

The number of cases for the ith individual’s regression is 
thus |Q(i)| (and not the ith observation alone). The global 
model can be understood as a special case in which Q(i) = N 
and wij = 1 for all i and j.

This is, as the alert reader will notice, an approach that is 
formally identical to that used in spatial analysis under the 
name geographically weighted regression (GWR) (see 
Fotheringham, Brunsdon, and Charlton, 2002). Just as with 
GWR, we construct |N| local estimates of our slope parameter 

and are interested in the degree to which, and the pattern by 
which, this parameter varies over our data. We discuss the 
relevance of well-known limitations of GWR below.

We adapt the logic, however, for the case of networks, 
especially when considering how to define neighborhoods 
and how to define weights.

Definition of the Neighborhood

One way to define the neighborhood is to include all nodes 
within some distance of the focal node. By “distance” 
between two nodes, we mean the length of the shortest path 
in a network between them. If we denote this path length as 
L(i, j) and choose some distance d, we may define a function 
D that indicates all the nodes within this distance of any 
focal node: D(i, d) = {j | L(i, j) ≤ d}. We can then use this 
function to define our neighborhoods; thus Q(i) = D(i, d). 
One might be interested in the special case of the simple 
neighborhood in which d = 1, and hence Q(i) is all those 
nodes j to which i is tied (Q[i] = {j | xij = 1}). However, in 
most social networks, this neighborhood is too small to 
allow us to produce stable regression estimates.

This method will, however, usually lead the neighbor-
hoods will vary in size across the graph. This can lead to 
some regression slopes to be based on many cases and others 
on few cases, which can confound volatility of our estimates 
with the variation we are interested in. For this reason, we 
may seek to hold constant across neighborhoods not the 
maximum distance but the number of neighbors to be 
included for each focal node (call this number M). To do this, 
we first find the smallest d that D(i, d) > M. We then include 
in Q(i) all D(i, d − 1) and then determine how far short we are 
of M (M − |D[i, d − 1]|); call this m*. We then randomly 
select m* nodes that are at distance d from i, producing a 
constant set of M of i’s nearest neighbors.

A complication may arise if the graph G is disconnected, 
that is, if there are some pairs of nodes between which there is 
no connecting path. A subset of a graph that is connected is 
known as a “component”; within any component, all path 
lengths are finite, but between components, path lengths may 
be seen as infinite. If we are constructing neighborhood by 
looking for the M closest neighbors, members of components 
of a size less than M cannot have properly defined neighbor-
hoods. However, it is worth emphasizing, that because we 
may also use weights based on the distance of neighbors of i 
from i, in some cases we may prefer to use what we shall call 
“unrestricted” neighborhoods (thus every neighborhood 
includes all nodes). This approach may be especially attractive 
where there are many small components.

Distance Weighting

However we compose our neighborhood, we have the possi-
bility of weighting all members equally, or weighting them by 

1We are, of course, free to consider Q(i) = N for all i, only with  
wij = 0 for certain cases. In other words, rather than exclude some j 
from i’s neighborhood, we set the weight between the two to zero. 
However, for compatibility with previous work, we make a distinc-
tion between the definition of the neighborhood of the ith node and 
the weights of the members these neighborhoods for the focal node.
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some function of their closeness to i. Such weighting allows us 
to use an unrestricted approach to neighborhoods, which has 
the advantage of maximizing the available degrees of freedom 
for each local regression. Thus although constructing a neigh-
borhood according to a fixed d or a fixed M may, if either of 
these is relatively small, often lead to unidentifiable models 
for neighborhoods in which there is no variation on the depen-
dent or independent variable, here unidentification is unlikely 
to occur for nodes that are part of a large component.2 For this 
reason, in our illustrations below, we use distance weighting 
combined with an unrestricted neighborhood.

Two commonly used functions for constructing these 
weights are the Gaussian and the bisquare. The bisquare 
function is

 w
L i j

bij = −
( )
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,
,   (3)

where b is a tunable parameter, which here we set to L*, 
where L* is the maximum observed path length (also known 
as the diameter of the graph).3 We treat the path length 
between members of unconnected components as infinite 
and hence their weight as zero; alternatively, one can follow 
another common practice and set the distance between nodes 
in different components to be L* + 1.

We are then interested in the variation of the set of local 
regression slopes, the vector β = [β1, β2, . . . βN]. There are 
two ways that we can quantify this variation. One involves 
using the variance, perhaps turning it into a standard devia-
tion or a coefficient of variation (the variance divided by the 
mean). The second is to look at something like the interquar-
tile range, which will be less sensitive to the presence of out-
liers than would a measure based on the standard deviation. 
Given that the purpose of this technique is to explore varia-
tion across local environments, we expect that analysts will 
prefer to keep the neighborhoods small, or the distance pen-
alty in our weighting relatively severe, even at the cost of 
some extreme estimates, and so we recommend the latter 
approach.

However, even if all the individuals in the network were 
actually a random draw from a single, unstructured bag, we 
would normally expect some variation across local coeffi-
cients to arise merely because of the random allocation of 
respondents onto a network. To determine whether the 
observed variation is greater than that expected under chance 
sampling, we use a permutation test. We construct a number 
of simulated networks, in which we keep the overall structure 

the same as that of the observed network but randomly assign 
the persons to nodes. We can then examine where the observed 
variation (whatever measure we use) sits on this constructed 
distribution and produce a number that can be interpreted as a 
p value—how often we might expect this degree of variation 
or even more variation simply given the distribution of per-
sons on the variables and given the structure of the network.

Illustration

Observed Variation in Local Slopes

We here examine a number of schools from the National 
Longitudinal Study of Adolescent to Adult Health (Add 
Health) data set. We begin by presenting an example from a 
high school with 576 students with valid network data (out of 
625 students altogether), in which we regress a scale of sub-
jective feelings of being “connected” to the school on self-
identification as Hispanic. In the data set as a whole, across 
all schools, the slope for this regression is −0.056, meaning 
that Hispanic students are somewhat less likely to feel con-
nected, on average, than are non-Hispanic students. Figure 1 
displays a smoothed density plot for β for this school. The 
dashed line indicates the aforementioned global regression 
slope across all schools in the data set. Given that the scale 
for “connectedness” has a standard deviation of 0.846, a 
local regression slope of 0.423, which is close to the mean 
local slope in this example school, implies that Hispanics are 
half a standard deviation less connected than non-Hispanics. 
Thus in some, but not all, parts of this school’s network, the 
effect is rather substantial.

We also can, to a limited extent, visualize where in the 
network the slope is high and where it is low. Figure 2 assigns 
each node a shade on the basis of its local regression value. 

2However, if there are isolated small components, such as dyads 
(sets of two nodes and their relations) and triads (sets of three nodes 
and their relations), we may have, under some weighting schemes, 
unidentified local regressions. We discuss solutions below.
3It is also possible empirically select b to maximize certain fit 
statistics.

Figure 1. Density of local regression coefficients in one school.
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Darker nodes are less negative than the lighter nodes. 
Hispanic students are indicated with a circle and non-His-
panic students with a square. Nodes are positioned here using 
the Fruchterman-Reingold algorithm.

We can see that there are two large clusters in the school, 
with relatively few ties between clusters. In the smaller one, 
there is a more negative relation between being Hispanic and 
feeling connected to the school. But there is also variation 
within the components: for example, in the larger compo-
nent, the relationship between being Hispanic and discon-
nection is smallest in an area to the upper left.

We can compare such variances with those produced by 
the same analysis in a different school. Thus Table 1 com-
pares the results given above (“school A,” row 1, column 1) 
with those of a somewhat smaller school (“school B,” col-
umn 2). Each value is the normed interquartile range of the 
slope coefficient from the bivariate regression specified in 
each row. We see that the school A has more variance in the 
relation between feelings of connection and being Hispanic 
than does school B. Table 1 presents two other rows corre-
sponding to two other bivariate analyses. Both of these have 
the student’s indegree, taken as a proxy for popularity, as the 
dependent variable. The first of these regresses indegree on 

students’ estimated GPAs and the second on sex. The two 
schools have similar degrees of dispersion of local coeffi-
cients for the former, while school B is more dispersed on the 
latter than school A. Thus one network may have greater 
variation than a second network regarding one relationship 
and less variation on another.

Figure 3 summarizes these results in a way similar to that 
used in Figure 1. We gain additional insight by seeing that it 
is not simply that the relation between feelings of connection 

Figure 2. Network of school friendships and local effects.

Table 1. Comparison across Schools and Regressions.

School A School B

Regression  
 Connected on Hispanic 7.36 6.69

[.68] [.65]
 Indegree on GPA 3.39 3.67

[.63] [.04]
 Indegree on Female 8.87 12.68

[.80] [.85]
n 576 415

Note: All variances are multiplied by 103; permutation test results are in 
brackets, scaled so that a larger number indicates less expected under chance.
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and identification as Hispanic is more concentrated in school 
B than in school A; the distributions of the two schools are on 
opposite sides of zero. Furthermore, we find that although the 
variation of the relation between indegree and GPA is similar 
in the two schools, it is substantially larger on average in 
school A than in school B.

Significance of Network Structure

In the example given in Figure 1, we saw substantial varia-
tion in the local coefficients linking students’ identifying 
as Hispanic to their feeling of connectedness. However, 
there are two reasons that we might see such a variation in 
local slope parameters. On one hand, this pattern could be 
expected given the distribution of individuals on the 
dependent and independent variables. This does not mean 
that the variation is an artifact; it may well describe the 
phenomenological texture of the school’s relational envi-
ronment. However, we may be particularly interested in 
cases in which the variation has to do with the specific 
network structure; the variation, then, is a network prop-
erty above and beyond the distribution of the individuals 
on the two variables in question.

To determine this, we can compare the degree of 
observed variation with that expected under a constructed 
distribution. In this case, we take the observed respondents 
but randomly assign them to different positions in the net-
work structure. We then compute the distribution of local 
parameters for this constructed network and then a 

measure of the degree of variation, such as the variance or 
the interquartile range. For our focal example, the results 
from 100 such simulations find 32 with an interquartile 
range as great as that observed. This suggests that although 
there is some reason to think that the degree of local vari-
ability of the relation between Hispanic and connectedness 
has something to do with the social organization of this 
particular school, we are not confident that this degree of 
variation is really a network characteristic, as opposed to a 
characteristic of the set of individuals in the school.

In contrast, the relation between popularity and sex is, 
compared with such a constructed probability distribution, 
relatively more dispersed in both schools than is the relation 
between connection and Hispanic status.4 (Table 1 includes 
these results for each regression in brackets.) Thus the per-
mutation test facilitates within-case, but across-model, com-
parisons. Finally, it is interesting that although the total 
degree of variance in the relation between popularity and 
GPA is similar across the two schools (row 2), in the second 
school, we are not at all surprised to see such a relation 
given the individual distributions, whereas in the first, there 
is more evidence of a particular network effect.

Figure 3. Comparisons of results in Table 1.

4In this constructed distribution, we treat indegree as a proxy for 
popularity and leave it fixed as an individual attribute for reasons 
of expositional clarity. That is, we do not recompute it in each 
constructed distribution. We are thus constructing counterfactual 
worlds in which “popular people” may have few friends.
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Discussion: Toward Multivariate 
Statistics

We have demonstrated the utility of local network regres-
sions as a way of exploring heterogeneity in structural rela-
tionships in network data, an issue that is increasingly 
considered key in comparing dynamics within and across 
networks (e.g., Flashman 2012, 2014; McFarland et al. 
2014). We have, it will be noted, examined only bivariate 
regressions. This is for an important reason: local regres-
sions of this sort easily induce false correlations between 
independent variables in a multiple regression. This has 
been discovered for the case of GWRs (Páez, Farber, and 
Wheeler 2011; Wheeler and Tiefelsdorf 2005) and occurred 
in our own multivariate simulations. We therefore propose 
this form of local network regressions only for bivariate 
relations. However, we close by making a few tentative 
suggestions for ways of moving toward multivariate 
analyses.

One possibility would certainly be to move toward mul-
tilevel modeling in which the level 2 units are the non-
nested neighborhoods of nodes. It is not, however, yet 
clear whether the distributional assumptions which are 
innocuous for conventional nested data structures would 
be problematic here.

A second possibility is to make use of the spatial filter-
ing approach shown by Griffith (2008) to perform well in 
disentangling local effects in two-dimensional spatial 
problems. The problem with the direct application of spa-
tial techniques to network data is that the weights matrix 
W, which automatically has certain advantageous proper-
ties in a metric space, may lead to imaginary solutions or 
no solutions outside of such a context. It would therefore 
make sense to use the network data to first position nodes 
in a space (which may be of high dimensionality) and then 
to use distance in this space to construct a weights matrix 
(which may also allow the application of techniques such 
as that suggested by Wheeler and Waller 2009 or Congdon 
2006).

Such future explorations may or may not allow the robust 
identification of local effects from multivariate regressions. 
However, in any case, bivariate local network regressions are 
extremely promising exploratory and diagnostic tools that 
are simple to perform and to interpret.
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